Tujuanpenyelesaian sistem persamaan linear dua variabel adalah menentukan nilai x dan y yang memenuhi sistem persamaan itu. Baris 1 x kolom 1 dan baris 1 x kolom 2. 16/5/2019 ยท contoh soal logaritma teori tentang logaritma pertama kali diperkenalkan oleh ilmuwan yang bernama john napier yang lahir pada tahun 1550 di dekat edinburgh.
Dalam beberapa soal persamaan matriks erdapat elemen dengan variabel x, y, atau yang lainnya yang nilainya belum diketahui. Cara mencari nilai x dan y pada matriks dapat dilakukan dengan menyamakan elemen-elemen dalam persamaan matrik tersebut. Misalnya, diberikan dua buah matriks yang dihubungkan oleh tanda sama dengan. Nilai elemen pada kolom keโ€“m dan baris keโ€“n pada matriks di ruas kiri sama dengan nilai elemen pada kolom keโ€“m dan baris keโ€“n pada matriks di ruas kanan. Matriks adalah bilangan-bilangan yang tersusun dalam baris dan kolom dengan tanda kurung siku. Bilangan-bilangan yang tersusun dalam baris dan kolom disebut elemen-elemen matriks. Pada persamaan dua buah matriks, nilai dari elemen-elemen matriks yang bersesuaian adalah sama. Sifat pada matriks ini kemudian dapat digunakan untuk pada cara mencari nilai x dan y pada matriks. Bentuk soal matriks dapat diberikan dalam bentuk hasil operasi hitung matriks. Beberapa soal matriks lainnya diberikan dalam bentuk mencari elemen matriks melalui variabel yang belum diketahui nilainya. Variabel yang akan dicari biasanya diberikan dalam variabel seperti x dan y, atau huruf lainnya. Persamaan nilai antar elemen matriks yang bersesuaian dapat digunakan untuk mengetahui nilai variabel yang belum diketahui. Cara mencari nilai x dan y pada matriks dapat dilakukan dengan membentuk persamaan antara elemen-elemen yang bersesuaian seperti gambaran berikut. Baca Juga Jenis โ€“ Jenis Matriks Bagaimana cara mencari nilai x dan y pada matriks? Sobat idschool dapat mencari tahu bagaimana caranya melalui ulasan di bawah. Table of Contents [Ringkasan] Operasi Hitung pada Matriks Contoh Cara Mencari Nilai x dan y pada Matriks Contoh Soal dan Pembahasan Contoh 1 โ€“ Soal Mencari Nilai x dan y pada Matriks Contoh 2 โ€“ Soal Persamaan Dalam Bentuk Matriks [Ringkasan] Operasi Hitung pada Matriks Sebelum ke bahasan cara mencari nilai x dan y pada matriks, ingat kembali bagaimana proses operasi hitung pada matriks. Di mana dua buah matriks atau lebih dapat dikenakan operasi hitung yang berupa penjumlahan/pengurangan dan perkalian. Namun tidak semua matriks dapat dikenakan operasi hitung. Pada penjumlahan atau pengurangan matriks, dua buah matriks atau lebih dapat dilakukan operasi hitung jika memiliki ukuran yang sama. Sedangkan pada perkalian dua buah matriks dapat dilakukan pada matriks dengan ukuran kolom matriks pertama sama dengan ukuran baris matriks kedua. Baca lebih lanjut operasi hitung pada matriks Perhatikan cara melakukan operasi hitung matriks berikut untuk penjumlahan/pengurangan, perkalian matriks dengan skalar, dan perkalian matriks dengan matriks. Penjumlahan dan Pengurangan Matriks Perkalian Matriks dengan Skalar Perkalian Matriks dengan Matriks Huruf x dan y pada umumnya merupakan variabel di dalam matriks yang nilainya belum diketahui. Nilai x dan y dapat diketahui dengan memanfaatkan persamaan antar elemen matriks yang sudah diketahui. Perhatikan proses mencari nilai x dan y pada matriks melalui sebuah contoh beserta penyelesaiannya berikut. Elemen matriks pada baris pertama kolom pertama pada ruas kanan sama dengan elemen matriks pada baris pertama kolom pertama matriks ruas kiri. Sehingga dapat diperoleh persamaan 2x โ€“ 1 = 3. Untuk mendapat nilai x, sobat idschool perlu menyelesaikan persamaan tersebut. Mencari nilai x2x โ€“ 1 = 32x = 3 + 12x = 4x = 4/2 = 2 Selanjutnya perhatikan bahwa elemen matriks ruas kiri pada baris dan kolom kedua sama dengan elemen matriks ruas kanan untuk baris dan kolom yang sama. Sehingga diperoleh persamaan 2y โ€“ 3 = โ€“1 yang dapat digunakan untuk mendapatkan nilai y. Mencari nilai y 2y โ€“ 3 = โ€“12y = โ€“1 + 32y = 2y = 2/2 = 1 Sehingga dari proses cara mencari nilai x dan y pada matriks dengan bentuk persamaan di atas dapat diperoleh nilai x = 2 dan y = Juga Invers dan Determinan Matriks Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk mengukur pemahaman bagaimana cara mencari nilai x dan y pada matriks. Setiap contoh soal diseertai pembahasan soal yang dapat digunakan sebagai tolak ukur keberhasilan mengerjakan soal. Selamat berlatih! Contoh 1 โ€“ Soal Mencari Nilai x dan y pada Matriks Jika nilai x dan y memenuhi penjumlahan matriks maka nilai x/y adalah โ€ฆ.A. โ€“1B. 0C. 2D. 3E. 4 PembahasanOperasi hitung penjumlahan matriks Diperoleh dua buah persamaan x โ€“ y + 1 = 3 โ†’ x โ€“ y = 2x + y + 3 = 7 โ†’ x + y = 4 Mencari nilai x Mencari nilai yx โ€“ y = 23 โ€“ y = 2โ€“y = 2 โ€“ 3โ€“y = โ€“1y = 1 Jadi, nilai x/y sama dengan 3/1 = 3Jawaban D Baca Juga Transpose Matriks dan Sifat โ€“ Sifatnya Contoh 2 โ€“ Soal Persamaan Dalam Bentuk Matriks PembahasanPerkalian matriks dengan matriks Ambil dua persamaan dalam matriks, tipsnya adalah pilih persamaan yang akan memudahkan perhitungan. Sehingga diperoleh dua buah persamaan seperti berikut. 6 + xy = 0xy = โ€“6 โ†’ y = โ€“ 6/x2y โ€“ 3x = โ€“12 Substitusi nilai y = โ€“6/x pada persamaan 2y โ€“ 3x = โ€“12 untuk mendapatkan nilai x2y โ€“ 3x = โ€“122โ€“ 6/x โ€“ 3x = โ€“12โ€“12/x โ€“ 3x = โ€“12 kalikan kedua ruas dengan xโ€“12 โ€“ 3x2 = โ€“12xโ€“3x2 + 12x โ€“ 12 = 0 bagi kedua ruas dengan โ€“3x2 โ€“ 4x + 4 = 0x โ€“ 22 = 0x โ€“ 2 = 0 x = 2 Mencari nilai yy = โ€“6/xy = โ€“6/2y = โ€“3 Jadi, nilai x + y dari persamaan matriks di atas adalah 2 โ€“ 3 = โ€“ C Demikianlah ulasan materi cara mencari nilai x dan y pada matriks beserta contoh soal dan pembahasannya. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Cara Menyelesaikan Sistem Persamaan Linear SPL dengan Matriks
Inversmatriks adalah kebalikan (invers) dari sebuah matriks. Jadi, apabila matriks tersebut dikalikan dengan inversnya, maka akan menjadi matriks identitas. Pada fungsi invers, kita disuruh mencari kebalikan dari fungsi tersebut. Misalnya aja, invers dari f (x) = 2x, maka jawabannya adalah f -1 (x) = ยฝ x.
Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo keren di sini kita punya soal tentang matriks matriks x yang memenuhi persamaan matriks berikut adalah kita dapat memisahkan terlebih dahulu disini untuk penulisan persamaannya. Sebut saja ini kita punya dalam matriks A yang ini adalah matriks B sehingga kita punya bahwa matriks A dikali matriks X akan sama dengan matriks B seperti ini perhatikan bahwa ketika kedua ruas dikalikan dengan a invers jadi ratunya disini A invers a lalu dikalikan dengan matriks X akan sama dengan a invers B perlu diperhatikan bahwa penulisan ke sini jangan sampai terbalik untuk urutan ya jadi ketika kita kalikan sini depan berarti ini juga si depan tidak boleh menjadi B infeksi perhatikan bahwa untuk Invasion perhatikan bahwa untuk kain pasti kali ini akan menghasilkan matriks identitas dimana matriks identitas adalah matriks yang ketika kita kalikan dengan matriks lain akan menghasilkan matriks itu sendiri dari invers X akan makan matriks identitas yang dikalikan matriks X = B perhatikan bahwa matriks identitas dikali matriks P akan menghasilkan matriks X itu sendiri tanyakan = matriks invers dikali dengan matriks B berarti kita perlu mencari terlebih dahulu untuk invers dari matriks A jika mendapati matriksnya perhatikan bahwa disini ketika kita punya misalkan matriks m yang elemennya adalah a kecil B kecil c kecil D kecil maka untuk invers dari matriks m dirumuskan sebagai 1 per a kecil B kecil dikurang B kecil c kecil lalu dikalikan dengan join dari matriks m yaitu D kecil B kecil Kecil lalu di sini A kecil jadi kita perhatikan dengan posisinya kita tukar hal untuk B kecil dan kecil masing-masing kita kalikan dengan 1 jadi perhatikan bahwa kita punya untuk matriks A yang adalah 2753 berarti kita dapat Tentukan untuk dengan mudah di mana ini akan sama beratnya diagonal yang ini kita kalikan ini tak lain sebenarnya adalah a ke c * d kecil. Jadi kita punya 2 dikali 3 dikurang dengan diagonal yang ini kita kalikan jadi kita ini adalah 7 dikalikan dengan 5 dan disini untuk chat join-nya berarti 2 dengan 3 kita tukar posisinya selalu 7 dengan min 5 masing-masing kita kalikan min 1 sehingga menjadi seperti ini berarti untuk invers ya Citra Pati adalah 1 per 6 dikurang dengan 35 dari kita punya adalah minus 29 kalau kita punya disini 3 menit Min 5 dan juga di sini 2 akibatnya kita mendapati bahwa untuk matriks X tak lain ini adalah untuk a. Invers kita punya adalah Min 14 29 tentunya dikali min 7 Min 5 * 2 kalau kita kalikan dengan matriks b adalah Min 387 Min 9 makanya kan = min 1 per 29 ini hanya sebagai pengalih kita taruh depan saja dan sekarang untuk matriks hasil perkalian antara dua matriks ini perhatikan bahwa kita dapat Tentukan untuk perkalian dua buah matriks dimana perkalian dua buah matriks berarti kita mengalihkan antara baris dengan kolom Jadi kita mulai terlebih dahulu untuk baris pertama dari matriks invers kita kalikan dengan kolom pertama dari matriks B dimana ini akan menghasilkan elemen yang terletak pada baris pertama kolom pertama juga cara mengalikan nya adalah sebagai berikut yaitu untuk setiap elemennya yang bersangkutan akan kita kalikan Lalu nanti kita jumlahkan jadi 3 X min 3 x min 7 Kita kalikan 7 lalu keduanya nanti kita jumlahkan jadi kita dapatkan di sini kita mulai untuk 3 dikalikan dengan min 3 lalu ditambahkan dengan min 7 yang dikalikan dengan sekarang untuk baris pertama kita kalikan dengan kolom ke-2 berarti ini kita punya dikalikan dengan 8 seperti ini lalu kita tambahkan dengan bentuk yang satunya lagi berarti min 7 dikali min 9 lalu berikutnya perhatikan bahwa untuk baris kedua kita kalikan dengan kolom yang pertama berarti Min 5 kita kalikan dengan min 3 ditambah dengan 2 kita kalikan terakhir baris kedua dengan kolom ke-2 berarti Min 5 kita kalikan 8 ditambah dengan 2 yang dikalikan dengan 9 sehingga kita dapati bawahnya kan = min 1 per 29 yang dikalikan dengan kita punya Disney minus 9 dikurang dengan 49 kali ulangan kita punya 24 ditambah dengan 63 kali ini kita punya 15 ditambah dengan 14 dan terakhir ini kita punya minus 40 dikurang dengan 8 jadinya kan = min 1 per 29 yang dikalikan dengan kita punya disini - 58 teladan yang kita punya 87 hal yang kita punya 2958 kita dapat melanjutkan Namun kita akan pindah halaman terlebih dahulu sehingga disini perhatikan bahwa kita punya Perkalian antara skalar dengan matriks dimana perkalian skalar dengan matriks berarti setiap halaman pada matriksnya kita kalikan angka tersebut dengan kasus ini setiap elemen pada matriks yang ini kita kalikan dengan min 1 per 29 sehingga dapat kita Tuliskan di bawah ini akan = min 1 per 29 yang dikalikan dengan minus 58 x + 6 Min 14 29, nah ini kita kalikan dengan 87 lalu ini untuk min 1 per 29 kita kalikan dengan 29 lalu untuk yang min 1 per 29 ini kita juga kali kan dengan minus 58 sehingga kita dapati bawahnya kan = 2 x min 3 x min 1 dan yang ini 2 jadi kita dapati matriks X ternyata seperti ini maka jawaban yang tepat adalah yang Wah sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Jawabanpaling sesuai dengan pertanyaan Tentukan matriks P yang memenuhi persamaan berikut! ([5,3],[3,2])P=([1,7],[0,5])
PembahasanPersamaan matriks dengan adalah matriks persegi yang mempunyai invers atau , berlaku Diperoleh penyelesaiannya yaitu Matriks yang memenuhi persamaan adalah . Oleh karena itu, jawaban yang benar adalah matriks dengan adalah matriks persegi yang mempunyai invers atau , berlaku Diperoleh penyelesaiannya yaitu Matriks yang memenuhi persamaan adalah . Oleh karena itu, jawaban yang benar adalah A.
Mengenalpengertian ordo matriks, menentukan determinan suatu matriks, menentukan nilai x yang memenuhi persamaan matriks, dan konsep kesamaan matriks. Fisika; Matematika; Biologi maka nilai x yang memenuhi adalah A. x = -6 atau x = -2 B. x = 6 atau x = -2 C. x = -6 atau x = 2 D. x = 3 atau x = 4 E. x = -3 atau x = -4

๏ปฟ- Program Belajar dari Rumah kembali tayang di TVRI, Selasa, 25 Agustus 2020. Dalam tayangan hari ini, siswa SMA/SMK belajar mengenai matriks. Di akhir video pertama, ada soal yang bisa dikerjakan untuk mengasah pengetahuanmu. Simak pembahasan soal ketiga! Soal dan jawaban Tentukan matriks X pada persamaan berikut! Matriks XLangkah pertama, kalikan tiap matriks dengan bilangan di depannya. Jangan lupa ada matriks transpose. Karena tiap matriks ordonya sudah sama, tinggal dilakukan penjumlahan dan pengurangan. Terakhir, bagi hasil penjumlahan matriks dengan 2 untuk mendapatkan nilai X. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.

x= โถ/โ‚ x = 6. Jadi nilai x yang memenuhi persamaan diatas adalah 6. Hitunglah nilai "x" dari persamaan berikut ini : โ…”x + 2 Campur Deret Desimal Diskon dan Bunga Fisika Fungsi Garis Lurus Gradien Himpunan Hitung Campuran Jarak Kubus Lingkaran Logaritma Matrik Pangkat dan Akar Pecahan Peluang Perbandingan Persamaan Kuadrat Rata
MatematikaALJABAR Kelas 11 SMAMatriksKesamaan Dua MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0044Diketahui kesamaan matriks berikut. [5 a 3 b 2 c]=[5 2 3 ...0404Diketahui matriks A=a+2 1-3 b -1 -6, B=2 a b-3 -...0106Diketahui matriks 5 a 3 b 2 c=5 2 3 2 a 2 a...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoHalo kok fresh jika kita melihat soal seperti ini disini kita harus tahu jika ada matriks misalkan matriks A kalikan matriks b = c maka berlaku ini jika kita kalikan dengan a invers di depannya jadi a invers dikalikan dengan a dikalikan dengan b = c invers dikalikan Aini = M atau identitas X B nah karena di sebelah kiri kita kaitkanlah invers maka sebelah kanan juga kita lestarikan a invers seperti ini. Jadi ini = 1 matriks identitas dikalikan suatu matriks maka akan jadi mati kita sendiri Makan sini b. = a invers C seperti itu kan jika ada suatu matriks A B C D makanya jika di sini sama dengan 1 per X dikurang b * c lalu dikalikan dengan a dan b bertukar posisi a b dan c dikali min 1berarti ini kita lanjutkan makan di sini berarti min 51 min 2 x y ini ya berarti sini X Y = 2 min 51 min 2 dikalikan 34 sama dengan 1 per 2 X min 2 min 4 Min 5 kali 1 min 15 min min 5 x = 2 dan Min 24 Min 22 Min 55 min 1 x = 34 = 14 + 51 menjadi x + 5 x 4 ini berarti min 1 dikali Tan 3 + 2 x 4 = min 2 kali 3 min 6+ 23 + 2 * 48 nah sebenarnya ini nih = 6 + 20 itu adalah 14 + 8 adalah hanya bentuknya matriks gimana ini = 1 per Min 4 + 501 Min 25 min 12 x = 34 jadi jawabannya hanya yang ini saja tapi penyelesaian dari X dan Y adalah 14 dan 5 berarti ini jawabannya adalah yang c sampai jumpa di pertanyaan berikutnya Penyelesaiansistem persamaan linear dengan matriks. Tentukanlah nilai x dan z yang memenuhi persamaan matriks berikut ini. Tentukan nilai x, y, dan z berikut ini jika. X + y = 9. Maka nilai x yang memenuhi adalah x 1 2 dan x 2 3. Rumus statistika dan contoh soal beserta jawabannya lengkap. Kelas 11 SMAMatriksInvers Matriks Ordo 2x2Invers Matriks Ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0242Jika matriks A = 3 -1 11 -4, invers matriks A adalah A^...0151Invers matriks A=-6 -5 -4 3 adalah A^-1= ...0551Diketahui matriks-matriks A= 3 5 -1 -2 dan B=-...0655Diketahui matriks A=5 -3 -2 1 . Jika A^-1 adala...Teks videoHalo fans. Nah di sini ada soal Kita disuruh untuk menentukan matriks X yang berordo 2 * 2 yang memenuhi persamaan berikut ini sebelumnya perlu diingat jika terdapat bentuk B = X dikali a maka untuk x nya itu = b * a invers untuk inversnya itu sendiri jika hanya = abcd maka invers yaitu = 1 per determinan a yaitu a. Dikurang b c itu dikali a dan b nya itu ditukar kemudian b dan c nya masing-masing dikali min 1 dengan cara atau ada di kurang bikinnya itu tidak boleh sama dengan nol maka dari itu untuk penyelesaian nya di sini. Nah. Bentuk ini itu sama saja dengan b = X dikali a maka untuk menentukan X yaitu adalah B dikali a invers sehingga kita harus menentukan dulu A invers nya di sini kan kita misalkan ini a na kita identifikasi disini abcd kemudirumus invers itu 1 per a dikurang b c jadi adiknya min 3 X min 2 itu 6 kemudian dikurangi 2 * 1 itu 2 kemudian di kali yah gantiin itu ditukar jadi di sini bentuknya min dua dan n min 3 kemudian B dan C yaitu masing-masing kita kalikan dengan min 1 jadi di sini min dua dan min 1 kemudian kita operasikan dapatkan 1/4 X matriksnya lalu kita perhatikan didapatkan min 2 per 4 min 2 per 4 min 1 per 4 dan min 3 per 4 nah kita telah mendapatkan invers matrik Kemudian untuk x-nya berarti B dikali a invers b nya tadi itu adalah Min 9 10 20 dikalikan matriks invers nya yaitu a invers nya ya jadi min 2 per 4 min 2 per 4 min 1 per 4 min 3 per 4 A kemudian kita kalikan matriksnya jadi ingat dalam perkalian matriks itu berarti baris dikali kolom berarti di sinidan dikali min 2 per 4 + 10 x min seperempat kemudian Min 9 x min 2 per 4 + 10 x min 3 per 4 Lalu 2 X min 2 per 4 ditambah 0 dikali minus seperempat Lalu 2 X min 2 per 4 + 0 x min 3 per 4 jadi kita operasikan ya kita dapatkan disini 18 per 4 + 10 per 4 + 18 per 4 dikurang 30 per 4 kemudian Min 4 per 4 lalu Min 4 per 4 dari sini kita dapatkan 8 per 4 MIN 12 per 4 Min 11 hasilnya adalah 2 min 3 min 1 min 1 maka dari sini kita telah mendapatkan matriks yang berordo 2 * 2 yang memenuhi persamaan tersebut yaitu 2 min 3 min 1 min 1 maka jawaban yang tepat itu adalah bagian D sampai jumpa di selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul E8nKu.
  • cp7eoe6tby.pages.dev/352
  • cp7eoe6tby.pages.dev/161
  • cp7eoe6tby.pages.dev/242
  • cp7eoe6tby.pages.dev/567
  • cp7eoe6tby.pages.dev/64
  • cp7eoe6tby.pages.dev/236
  • cp7eoe6tby.pages.dev/423
  • cp7eoe6tby.pages.dev/190
  • matrik x yang memenuhi persamaan